ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Francesco Scaffidi-Argentina, Mario Dalle Donne, Claudio Ronchi, Claudio Ferrero
Fusion Science and Technology | Volume 32 | Number 2 | September 1997 | Pages 179-195
Technical Paper | Blanket Engineering | doi.org/10.13182/FST97-A19890
Articles are hosted by Taylor and Francis Online.
A mechanistic model for the description of helium swelling and tritium release in neutron-irradiated beryllium is presented. Initially aimed at predicting the mechanical stability and the tritium retention capacity of beryllium in a fusion reactor blanket, the ANFIBE code was finally extended to provide an exhaustive description of the properties of this material under fast neutron irradiation. In-solid diffusion and precipitation of helium and tritium, radiation re-solution, and bubble growth and coalescence in different structural domains of the material are taken into account and formulated in a compact rate equation system, enabling the evolution of swelling and release to be calculated under stationary and nonstationary irradiation and temperature conditions. A particular feature of the model is the treatment of the growth of gas bubbles and pores in the interactive compressive stress field created by the gas precipitated in cavities of different sizes and at different pressures, enabling a realistic and accurate calculation of the stress-sensitive intergranular-swelling components and of the related pore-venting effects. The salient physical hypotheses of the model are discussed, as well as the formalism adopted for the description of helium and tritium diffusion precipitation and swelling.