ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Francesco Scaffidi-Argentina, Mario Dalle Donne, Claudio Ronchi, Claudio Ferrero
Fusion Science and Technology | Volume 32 | Number 2 | September 1997 | Pages 179-195
Technical Paper | Blanket Engineering | doi.org/10.13182/FST97-A19890
Articles are hosted by Taylor and Francis Online.
A mechanistic model for the description of helium swelling and tritium release in neutron-irradiated beryllium is presented. Initially aimed at predicting the mechanical stability and the tritium retention capacity of beryllium in a fusion reactor blanket, the ANFIBE code was finally extended to provide an exhaustive description of the properties of this material under fast neutron irradiation. In-solid diffusion and precipitation of helium and tritium, radiation re-solution, and bubble growth and coalescence in different structural domains of the material are taken into account and formulated in a compact rate equation system, enabling the evolution of swelling and release to be calculated under stationary and nonstationary irradiation and temperature conditions. A particular feature of the model is the treatment of the growth of gas bubbles and pores in the interactive compressive stress field created by the gas precipitated in cavities of different sizes and at different pressures, enabling a realistic and accurate calculation of the stress-sensitive intergranular-swelling components and of the related pore-venting effects. The salient physical hypotheses of the model are discussed, as well as the formalism adopted for the description of helium and tritium diffusion precipitation and swelling.