ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Hidetaka Sada
Fusion Science and Technology | Volume 32 | Number 1 | August 1997 | Pages 107-125
Technical Paper | Nuclear Reaction in Solid | doi.org/10.13182/FST97-A19883
Articles are hosted by Taylor and Francis Online.
A theory of cold fusion is presented, based on the Bloch theorem. The Bloch functions are used to represent the charged reactants and products of the nuclear fusion reaction in solid-state crystals. The nuclear fusion reaction is treated as a perturbation, the validity of which is shown. Field operator formalism, or quantum field theory, is used to calculate the transition matrix elements. Density of final states is calculated based on the phonon theory. The reaction rate and fusion power output density are calculated by Fermi's golden rule, and from them it is recognized that they look as if they had no reproducibility—unless it is known that they depend on the number of the primitive cells in one crystal, the numbers of both the reactants and products, and the degree of the effectiveness of the Pauli exclusion principle. The triggering mechanism may also have a relation with its dependence on the aforementioned parameters. Three selection rules are derived. One of them is very important and valuable because it suggests that cold fusion is a very clean energy resource; i.e., the radioactivity level of cold fusion is extremely low and safe compared with its output power or the current fission output power. The ratio (f/t) of the production rate of 4He (heat) to that of tritons is derived quantitatively and compared with the observed value. The necessary conditions for cold fusion to occur and continue are given. Quantitative descriptions about nuclear fusion reactions in light (or hydrogen) water electrolysis are also given.