ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Hidetaka Sada
Fusion Science and Technology | Volume 32 | Number 1 | August 1997 | Pages 107-125
Technical Paper | Nuclear Reaction in Solid | doi.org/10.13182/FST97-A19883
Articles are hosted by Taylor and Francis Online.
A theory of cold fusion is presented, based on the Bloch theorem. The Bloch functions are used to represent the charged reactants and products of the nuclear fusion reaction in solid-state crystals. The nuclear fusion reaction is treated as a perturbation, the validity of which is shown. Field operator formalism, or quantum field theory, is used to calculate the transition matrix elements. Density of final states is calculated based on the phonon theory. The reaction rate and fusion power output density are calculated by Fermi's golden rule, and from them it is recognized that they look as if they had no reproducibility—unless it is known that they depend on the number of the primitive cells in one crystal, the numbers of both the reactants and products, and the degree of the effectiveness of the Pauli exclusion principle. The triggering mechanism may also have a relation with its dependence on the aforementioned parameters. Three selection rules are derived. One of them is very important and valuable because it suggests that cold fusion is a very clean energy resource; i.e., the radioactivity level of cold fusion is extremely low and safe compared with its output power or the current fission output power. The ratio (f/t) of the production rate of 4He (heat) to that of tritons is derived quantitatively and compared with the observed value. The necessary conditions for cold fusion to occur and continue are given. Quantitative descriptions about nuclear fusion reactions in light (or hydrogen) water electrolysis are also given.