ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep Space: The new frontier of radiation controls
In commercial nuclear power, there has always been a deliberate tension between the regulator and the utility owner. The regulator fundamentally exists to protect the worker, and the utility, to make a profit. It is a win-win balance.
From the U.S. nuclear industry has emerged a brilliantly successful occupational nuclear safety record—largely the result of an ALARA (as low as reasonably achievable) process that has driven exposure rates down to what only a decade ago would have been considered unthinkable. In the U.S. nuclear industry, the system has accomplished an excellent, nearly seamless process that succeeds to the benefit of both employee and utility owner.
Alexander B. Kukushkin, Valentin A. Rantsev-Kartinov, Arkady R. Terentiev
Fusion Science and Technology | Volume 32 | Number 1 | August 1997 | Pages 83-93
Technical Paper | Plasma Engineering | doi.org/10.13182/FST97-A19881
Articles are hosted by Taylor and Francis Online.
Experimental results are presented that verify the formerly predicted possibility of the formation of a closed, spheromak-like magnetic configuration (SLMC) by the natural magnetic field of a plasma focus discharge. The model is based on the self-generated transformation of a toroidal (i.e., azimuthal) magnetic field into a poloidal one. At the final stage of the discharge, the SLMC takes the form of a squeezed spheromak, which includes a combined Z-ϑ-pinch at its major axis, exhibiting a power density several orders of magnitude larger than that measured experimentally on a force-free flux-conserver-confined spheromak formed by helicity injection. The results suggest the possibility of further concentrating the plasma power density by means of compressing the SLMC-trapped plasma by the residual magnetic field of the plasma focus discharge. A qualitative model is given for the scenario of the SLMC-producing plasma focus discharge. Special emphasis is placed on the difference of this approach from conventional approaches to the role of magnetic field reconnection processes in plasma focus dynamics. The operational conditions necessary to stimulate SLMC formation in high-current gaseous discharge systems and the uses of SLMC-trapped plasmas are discussed briefly.