ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Hermann WÜrz, Nicolai Arkhipov, Vitali Bakhtin, Boris Bazylev, Igor Landman, Valeri Safronov, Dima Toporkov, Sergej Vasenin, Anatoli Zhitlukhin
Fusion Science and Technology | Volume 32 | Number 1 | August 1997 | Pages 45-74
Technical Paper | First-Wall Technology | doi.org/10.13182/FST97-A19879
Articles are hosted by Taylor and Francis Online.
In evaluating the lifetime of plasma-facing components for the International Thermonuclear Experimental Reactor (ITER) against nonnormal high heat loads, credit is taken from the existence of a plasma shield that protects the target from excessive evaporation. Formation and physical properties of plasma shields are studied at the dual plasma gun facility, 2MK-200, under conditions simulating ITER hard disruptions and edge-localized modes (ELMs). The experimental results are used for validation of the theoretical modeling of the plasma/surface interaction. The important features of the non-local thermodynamic equilibrium plasma shield, such as temperature and density distribution, its evolution, the conversion efficiency of the energy of the plasma stream into total and soft X-ray radiation from highly ionized evaporated target material, and the energy balance in the plasma shield, are reproduced quite well. Thus, realistic modeling of ITER disruptive plasma/wall interaction is now possible. Because of the rather small target erosion in the simulation experiments, material erosion for ITER typical disruptions and ELMs cannot be evaluated from these simulation experiments. This requires additional simulation experiments with hot plasma streams of longer pulse duration and a separate numerical analysis, which can now be performed with validated theoretical models.