ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
DOE signs two more OTAs in Reactor Pilot Program
This week, the Department of Energy has finalized two new other transaction agreements (OTAs) with participating companies in its Reactor Pilot Program, which aims to get one or two fast-tracked reactors on line by July 4 of this year. Those companies are Terrestrial Energy and Oklo.
Hermann WÜrz, Nicolai Arkhipov, Vitali Bakhtin, Boris Bazylev, Igor Landman, Valeri Safronov, Dima Toporkov, Sergej Vasenin, Anatoli Zhitlukhin
Fusion Science and Technology | Volume 32 | Number 1 | August 1997 | Pages 45-74
Technical Paper | First-Wall Technology | doi.org/10.13182/FST97-A19879
Articles are hosted by Taylor and Francis Online.
In evaluating the lifetime of plasma-facing components for the International Thermonuclear Experimental Reactor (ITER) against nonnormal high heat loads, credit is taken from the existence of a plasma shield that protects the target from excessive evaporation. Formation and physical properties of plasma shields are studied at the dual plasma gun facility, 2MK-200, under conditions simulating ITER hard disruptions and edge-localized modes (ELMs). The experimental results are used for validation of the theoretical modeling of the plasma/surface interaction. The important features of the non-local thermodynamic equilibrium plasma shield, such as temperature and density distribution, its evolution, the conversion efficiency of the energy of the plasma stream into total and soft X-ray radiation from highly ionized evaporated target material, and the energy balance in the plasma shield, are reproduced quite well. Thus, realistic modeling of ITER disruptive plasma/wall interaction is now possible. Because of the rather small target erosion in the simulation experiments, material erosion for ITER typical disruptions and ELMs cannot be evaluated from these simulation experiments. This requires additional simulation experiments with hot plasma streams of longer pulse duration and a separate numerical analysis, which can now be performed with validated theoretical models.