ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
George Tsotridis
Fusion Science and Technology | Volume 32 | Number 1 | August 1997 | Pages 35-44
Technical Paper | First-Wall Technology | doi.org/10.13182/FST97-A19878
Articles are hosted by Taylor and Francis Online.
Plasma-facing components in tokamak-type fusion reactors are subjected to intense heat loads during plasma disruptions, which causes melting and evaporation of the surface layer. The influence of the beam cross section of the incident energy on the depths of heat-affected zones on pure tungsten metal has been studied by using a two-dimensional transient computer model that solves the equations of motion and energy. Results are presented for relatively long disruption times for different beam cross sections and for a range of energy densities. It is demonstrated that there exists a critical value of cross-section area beyond which any further increase has no appreciable influence on the resulting depths of molten layers. It is also demonstrated that as the cross section increases, the convective flows caused by surface tension gradients resulting from variations of surface impurities are confined at regions close to the periphery of the molten zone, whereas at the center of the molten pool, heat is transported in the molten metal by conduction. It is demonstrated that by increasing the beam cross-section area, the resulting depths of molten layers increase. However, there exists a critical value of cross section beyond which the resulting molten layer depths are invariant to the beam cross section. It is further appreciated that there are other important phenomena taking part during plasma disruptions, such as electromagnetic forces, but at this stage, such influences on the molten layers will not be studied. Nevertheless, the influence of the beam cross-sectional area would be of similar importance.