ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Michael J. Gaeta, Brad J. Merrill, Hans-Werner Bartels, Carine Rachel Laval, Leonid Topilski
Fusion Science and Technology | Volume 32 | Number 1 | August 1997 | Pages 23-34
Technical Paper | First-Wall Technology | doi.org/10.13182/FST97-A19877
Articles are hosted by Taylor and Francis Online.
The possibility of a beryllium-steam reaction during severe accidents in the International Thermonuclear Experimental Reactor (ITER) is a safety concern because the hydrogen produced from this reaction could pose a flammability or detonation hazard. The physical mechanisms governing the production of hydrogen are examined, and the sequence of events during a postulated ex-vessel loss-of-coolant accident (LOCA) are presented. A MELCOR simulation of an ex-vessel LOCA with simultaneous failure of the plasma shutdown system indicates that an in-vessel breach of the coolant system occurs because of first-wall melt-through. For the ITER interim first-wall/shield-blanket (FW/SB) design, this accident results in ∼67 kg of hydrogen being produced. A similar simulation for the divertor predicts only 0.3 kg of hydrogen because of additional cooling experienced by the divertor during the blowdown of coolant into the vacuum vessel. There is evidence to indicate that beryllium evaporation from the first wall at a surface temperature of 1100°C is enough to cause plasma termination through beryllium evaporation. This plasma termination occurs prior to first-wall melt-through and could minimize or eliminate significant hydrogen production. Sensitivity studies were performed by varying the first-wall temperature at which plasma termination and in-vessel breach occurs for an ex-vessel LOCA scenario. This study shows that if the plasma is terminated before 150 s (i.e., a maximum first-wall temperature of 777°C) after the ex-vessel LOCA, the amount of hydrogen generated is ∼1 kg, which is well below the flammability limit of 10 kg and gives a reasonable margin for model uncertainty. Other sensitivity studies using the FW/SB model indicated a relatively weak dependence of the hydrogen produced on in-vessel and ex-vessel breach size. In addition, a 60% reduction in coolant inventory resulted in only a one-third decrease in hydrogen production from the base case. Preliminary calculations for an in-vessel LOCA indicate that 100 kg of 50-µm dust in the vacuum vessel could generate 2 kg of hydrogen.