ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Michael J. Gaeta, Brad J. Merrill, Hans-Werner Bartels, Carine Rachel Laval, Leonid Topilski
Fusion Science and Technology | Volume 32 | Number 1 | August 1997 | Pages 23-34
Technical Paper | First-Wall Technology | doi.org/10.13182/FST97-A19877
Articles are hosted by Taylor and Francis Online.
The possibility of a beryllium-steam reaction during severe accidents in the International Thermonuclear Experimental Reactor (ITER) is a safety concern because the hydrogen produced from this reaction could pose a flammability or detonation hazard. The physical mechanisms governing the production of hydrogen are examined, and the sequence of events during a postulated ex-vessel loss-of-coolant accident (LOCA) are presented. A MELCOR simulation of an ex-vessel LOCA with simultaneous failure of the plasma shutdown system indicates that an in-vessel breach of the coolant system occurs because of first-wall melt-through. For the ITER interim first-wall/shield-blanket (FW/SB) design, this accident results in ∼67 kg of hydrogen being produced. A similar simulation for the divertor predicts only 0.3 kg of hydrogen because of additional cooling experienced by the divertor during the blowdown of coolant into the vacuum vessel. There is evidence to indicate that beryllium evaporation from the first wall at a surface temperature of 1100°C is enough to cause plasma termination through beryllium evaporation. This plasma termination occurs prior to first-wall melt-through and could minimize or eliminate significant hydrogen production. Sensitivity studies were performed by varying the first-wall temperature at which plasma termination and in-vessel breach occurs for an ex-vessel LOCA scenario. This study shows that if the plasma is terminated before 150 s (i.e., a maximum first-wall temperature of 777°C) after the ex-vessel LOCA, the amount of hydrogen generated is ∼1 kg, which is well below the flammability limit of 10 kg and gives a reasonable margin for model uncertainty. Other sensitivity studies using the FW/SB model indicated a relatively weak dependence of the hydrogen produced on in-vessel and ex-vessel breach size. In addition, a 60% reduction in coolant inventory resulted in only a one-third decrease in hydrogen production from the base case. Preliminary calculations for an in-vessel LOCA indicate that 100 kg of 50-µm dust in the vacuum vessel could generate 2 kg of hydrogen.