ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
J. Martin Taccetti, Thomas P. Intrator, Frederick J. Wysocki, Katherine C. Forman, Donald G. Gale, Sean K. Coffey, James H. Degnan
Fusion Science and Technology | Volume 41 | Number 1 | January 2002 | Pages 13-23
Technical Paper | doi.org/10.13182/FST02-A196
Articles are hosted by Taylor and Francis Online.
Two experiments showing continuous, real-time measurements of the radial convergence of a high-aspect-ratio aluminum flux conserver are presented. These results were obtained by measuring the compression of both axial and radial components of an internal low-intensity magnetic field. Repeatable flux conserver compressions of this type, uniform to 10:1 compression ratio, form a step toward achieving magnetized target fusion, where a plasma of appropriate temperature and density would be introduced into the flux conserver for compression to fusion conditions. While X radiographs show this compression ratio was achieved, the magnetic field probe signals were cut off earlier. Axial component measurements resulted in compression ratios of 7:1 and 6.3:1, for the first and second compressions, before the magnetic probe signals were lost. Radial component measurements disagree with the axial probe results. Although the discrepancy between axial and radial probe measurements is not completely understood, possible explanations are presented.