ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Ronald D. Boyd, Sr., Penrose Cofie, Qing-Yuan Li, Ali A. Ekhlassi
Fusion Science and Technology | Volume 41 | Number 1 | January 2002 | Pages 1-12
Technical Paper | doi.org/10.13182/FST41-1-12
Articles are hosted by Taylor and Francis Online.
In the development of plasma-facing components for fusion reactors and high-heat-flux heat sinks (or components) for electronic applications, the components are usually subjected to a peripherally nonuniform heat flux. Even if the applied heat flux is uniform in the axial direction (which is unlikely), both intuition and recent investigations have clearly shown that both the local heat flux and the eventual critical heat flux (CHF) in this three-dimensional (3-D) case will differ significantly from similar quantities found in the voluminous body of data for uniformly heated flow channels. Although this latter case has been used in the past as an estimate for the former case, more study has become necessary to examine the 3-D temperature and heat flux distributions and related CHF. Work thus far has shown that the nonuniform peripheral heat flux condition enhances CHF in some cases.To avoid the excess costs associated with using electron or ion beams to produce the nonuniform heat flux, a new facility was developed that will allow 3-D conjugate heat transfer measurements and two-dimensional, local subcooled flow boiling heat flux and related CHF measurements.The configurations under study for this work consist of (a) a nonuniformly heated cylinder-like test section with a circular coolant channel bored through the center and (b) a monoblock that is a square cross-section parallelepiped with a circular drilled flow channel along the channel centerline. The theoretical or ideal cylinder-like test section would be a circular cylinder with half (-90 to 90 deg) of its outside boundary subjected to a uniform heat flux and the remaining half insulated. For the monoblock, a uniform heat flux is applied to one of the outside surfaces, and the remaining surfaces are insulated. The outside diameter of the cylinder-like test section is 30.0 mm, and its length is 200.0 mm. The monoblock square is 30.0 mm long. The inside diameter of the flow channel for both types of test sections is 10.0 mm. Water is the coolant. The inlet water temperature can be set at any level in the range from 26.0 to 130.0°C, and the exit pressure can be set at any level in the range from 0.4 to 4.0 MPa. Thermocouples were placed at 48 locations inside the solid cylinder-like or monoblock test section to obtain 3-D wall temperature variations and related local heat flux. Finally, the mass velocity can be set at any level in the range from 0.4 to 10.0 Mg/m2s for the 10.0-mm-diam channel.