ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Fermilab center renamed after late particle physicist Helen Edwards
Fermi National Accelerator Laboratory’s Integrated Engineering Research Center, which officially opened in January 2024, is now known as the Helen Edwards Engineering Center. The name was changed to honor the late particle physicist who led the design, construction, commissioning, and operation of the lab’s Tevatron accelerator and was part of the Water Resources Development Act signed by President Biden in December 2024, according to a Fermilab press release.
Naoya Matsui, Takahiro Maegawa, Kazuyuki Noborio, Ryuta Kasada, Yasushi Yamamoto, Satoshi Konishi
Fusion Science and Technology | Volume 64 | Number 3 | September 2013 | Pages 692-696
Test Blanket, Fuel Cycle, and Breeding | Proceedings of the Twentieth Topical Meeting on the Technology of Fusion Energy (TOFE-2012) (Part 2) Nashville, Tennessee, August 27-31, 2012 | doi.org/10.13182/FST13-A19173
Articles are hosted by Taylor and Francis Online.
Neutron transport and energy composition of neutron beam extracted from a cylindrical discharge type fusion device was studied by using the computer simulation code, MCNP. In this study, three concepts of neutron beam optics (reflector and moderator) were proposed and examined; combined reflector which consists of two layers of different materials, inserting a moderator into the reflector to thermalize the neutron beam, and bending the extraction channel to avoid direct extraction of high energy neutrons. Combined reflector system produces 3.2 times higher neutron flux than no reflector when using W and Fe as outer and inner reflectors. The beam convergence is not dependent on reflector materials. Polyethylene (PE) and Fe combination produces fast neutron beam where more than 90% of the neutrons are fast. Combination of PE and D2O produces more than 30% thermalized neutron beam, but it contains epithermal and fast neutrons. When using moderator (D2O), the thickness of which is over 30 cm, more than 90% of the neutrons are thermalized. The bend angle of 20° produces more than 80% thermalized neutron beam. Both inserting moderator and bending channel are effective to extract thermalized neutron beam. These results are useful for designing a neutron source which can produce specified neutron beam.