ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Nuclear News 40 Under 40 discuss the future of nuclear
Seven members of the inaugural Nuclear News 40 Under 40 came together on March 4 to discuss the current state of nuclear energy and what the future might hold for science, industry, and the public in terms of nuclear development.
To hear more insights from this talented group of young professionals, watch the “40 Under 40 Roundtable: Perspectives from Nuclear’s Rising Stars” on the ANS website.
Naoya Matsui, Takahiro Maegawa, Kazuyuki Noborio, Ryuta Kasada, Yasushi Yamamoto, Satoshi Konishi
Fusion Science and Technology | Volume 64 | Number 3 | September 2013 | Pages 692-696
Test Blanket, Fuel Cycle, and Breeding | Proceedings of the Twentieth Topical Meeting on the Technology of Fusion Energy (TOFE-2012) (Part 2) Nashville, Tennessee, August 27-31, 2012 | doi.org/10.13182/FST13-A19173
Articles are hosted by Taylor and Francis Online.
Neutron transport and energy composition of neutron beam extracted from a cylindrical discharge type fusion device was studied by using the computer simulation code, MCNP. In this study, three concepts of neutron beam optics (reflector and moderator) were proposed and examined; combined reflector which consists of two layers of different materials, inserting a moderator into the reflector to thermalize the neutron beam, and bending the extraction channel to avoid direct extraction of high energy neutrons. Combined reflector system produces 3.2 times higher neutron flux than no reflector when using W and Fe as outer and inner reflectors. The beam convergence is not dependent on reflector materials. Polyethylene (PE) and Fe combination produces fast neutron beam where more than 90% of the neutrons are fast. Combination of PE and D2O produces more than 30% thermalized neutron beam, but it contains epithermal and fast neutrons. When using moderator (D2O), the thickness of which is over 30 cm, more than 90% of the neutrons are thermalized. The bend angle of 20° produces more than 80% thermalized neutron beam. Both inserting moderator and bending channel are effective to extract thermalized neutron beam. These results are useful for designing a neutron source which can produce specified neutron beam.