ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
J. C. Rivas, A. de Blas, J. Dies, L. Sedano
Fusion Science and Technology | Volume 64 | Number 3 | September 2013 | Pages 687-691
Test Blanket, Fuel Cycle, and Breeding | Proceedings of the Twentieth Topical Meeting on the Technology of Fusion Energy (TOFE-2012) (Part 2) Nashville, Tennessee, August 27-31, 2012 | doi.org/10.13182/FST13-A19172
Articles are hosted by Taylor and Francis Online.
In this work, a model has been developed to calculate the neutron wall loading poloidal distribution in a generic tokamak plasma and vessel geometry on the basis of Monte Carlo simulation. Different neutron source radial profiles corresponding to advanced plasma scenarios have been implemented in this model, using combinations of step and parabolic functions.The model has been validated with data from state-of-the-art simulations of ITER wall loading, and a parametric study has been performed over different plasma geometries and radial profiles to check the variability of the neutron poloidal profile.The results show the effect of the different configurations on neutron wall loading. This model can be used for parametric studies for conceptual design or systems analysis activities.