ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Texas-based WCS chosen to manage U.S.-generated mercury
A five-year, $17.8 million contract has been awarded to Waste Control Specialists for the long-term management and storage of elemental mercury, the Department of Energy’s Office of Environmental Management announced on November 21.
B. H. Mills, J. D. Rader, D. L. Sadowski, M. Yoda, S. I. Abdel-Khalik
Fusion Science and Technology | Volume 64 | Number 3 | September 2013 | Pages 670-674
Test Blanket, Fuel Cycle, and Breeding | Proceedings of the Twentieth Topical Meeting on the Technology of Fusion Energy (TOFE-2012) (Part 2) Nashville, Tennessee, August 27-31, 2012 | doi.org/10.13182/FST12-527
Articles are hosted by Taylor and Francis Online.
As part of the ARIES study, the Georgia Tech group has experimentally studied the thermal performance of a helium-cooled `finger-type' tungsten divertor design that uses jet impingement and a fin array to cool the plasma-facing surface. These studies were performed using air at Reynolds numbers Re, spanning those for prototypical operating conditions. A brass test section heated with an oxy-acetylene torch at incident heat fluxes up to 2 MW/m2 was used. Recently, data obtained with room-temperature helium suggests that dynamic similarity between the air and helium experiments cannot be achieved by only matching Re because of the difference in the relative contributions of convection and conduction through the annular side walls of the divertor. Numerical simulations suggest that achieving dynamic similarity requires matching the ratio of the thermal conductivity of the divertor module material to that of the coolant under operating conditions, as well as Re.Studies were performed to verify that experiments at the prototypical Re and thermal conductivity ratio using helium at room temperature give Nusselt numbers Nu that are dynamically similar to those at prototypical operating conditions. Given that the thermal conductivity of helium decreases as temperature decreases, matching of the thermal conductivity ratio required a carbon steel test section with a thermal conductivity much lower than that of the brass alloy previously used. The resulting ratio of the test section to coolant thermal conductivities is similar to that of the tungsten alloy and helium at prototypical conditions. The data were used to verify generalized correlations for Nu, as a function of Re and the thermal conductivity ratio. The correlations can be used to determine the maximum heat flux that can be accommodated by the divertor at prototypical conditions.