ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
B. H. Mills, J. D. Rader, D. L. Sadowski, M. Yoda, S. I. Abdel-Khalik
Fusion Science and Technology | Volume 64 | Number 3 | September 2013 | Pages 670-674
Test Blanket, Fuel Cycle, and Breeding | Proceedings of the Twentieth Topical Meeting on the Technology of Fusion Energy (TOFE-2012) (Part 2) Nashville, Tennessee, August 27-31, 2012 | doi.org/10.13182/FST12-527
Articles are hosted by Taylor and Francis Online.
As part of the ARIES study, the Georgia Tech group has experimentally studied the thermal performance of a helium-cooled `finger-type' tungsten divertor design that uses jet impingement and a fin array to cool the plasma-facing surface. These studies were performed using air at Reynolds numbers Re, spanning those for prototypical operating conditions. A brass test section heated with an oxy-acetylene torch at incident heat fluxes up to 2 MW/m2 was used. Recently, data obtained with room-temperature helium suggests that dynamic similarity between the air and helium experiments cannot be achieved by only matching Re because of the difference in the relative contributions of convection and conduction through the annular side walls of the divertor. Numerical simulations suggest that achieving dynamic similarity requires matching the ratio of the thermal conductivity of the divertor module material to that of the coolant under operating conditions, as well as Re.Studies were performed to verify that experiments at the prototypical Re and thermal conductivity ratio using helium at room temperature give Nusselt numbers Nu that are dynamically similar to those at prototypical operating conditions. Given that the thermal conductivity of helium decreases as temperature decreases, matching of the thermal conductivity ratio required a carbon steel test section with a thermal conductivity much lower than that of the brass alloy previously used. The resulting ratio of the test section to coolant thermal conductivities is similar to that of the tungsten alloy and helium at prototypical conditions. The data were used to verify generalized correlations for Nu, as a function of Re and the thermal conductivity ratio. The correlations can be used to determine the maximum heat flux that can be accommodated by the divertor at prototypical conditions.