ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Texas-based WCS chosen to manage U.S.-generated mercury
A five-year, $17.8 million contract has been awarded to Waste Control Specialists for the long-term management and storage of elemental mercury, the Department of Energy’s Office of Environmental Management announced on November 21.
H. Zhang, A. Ying, M. Abdou
Fusion Science and Technology | Volume 64 | Number 3 | September 2013 | Pages 651-656
Test Blanket, Fuel Cycle, and Breeding | Proceedings of the Twentieth Topical Meeting on the Technology of Fusion Energy (TOFE-2012) (Part 2) Nashville, Tennessee, August 27-31, 2012 | doi.org/10.13182/FST12-579
Articles are hosted by Taylor and Francis Online.
A SiC-based flow channel insert (FCI) is used as an electrical and thermal insulator in the Dual Coolant Lead Lithium (DCLL) blanket. To reduce the stress of the FCI structural material, the pressure equalization slot (PES) is implemented in the FCI wall. However, the PES affects the tritium transfer behavior and loss rate. Therefore it is important to examine the tritium loss rate and ensure it remains below an allowable limit. In the present study, we analyze tritium transport and quantify the tritium loss rate in a front duct of the DCLL-type outboard blanket where PbLi moves poloidally. Three types of poloidal ducts have been considered: one without the PES, one with the PES in the wall parallel to the magnetic field and one with the PES in the wall perpendicular to the magnetic field. Tritium concentration fields are obtained by solving a fully 3-D problem with appropriate boundary conditions at various interfaces. Results show a high tritium concentration at the location of reversed flow when a PES was located in the wall parallel to the field. Furthermore, when any PES was introduced, the PES changed the velocity profiles and thus changed the tritium concentrations in the core and gaps, which increases the tritium losses from 1.244% to 1.413% under the calculation conditions.