ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Dong Won Lee et al.
Fusion Science and Technology | Volume 64 | Number 3 | September 2013 | Pages 645-650
Test Blanket, Fuel Cycle, and Breeding | Proceedings of the Twentieth Topical Meeting on the Technology of Fusion Energy (TOFE-2012) (Part 2) Nashville, Tennessee, August 27-31, 2012 | doi.org/10.13182/FST13-A19165
Articles are hosted by Taylor and Francis Online.
The design scheme and system codes for fusion application have been developed for the ITER Test Blanket Module (TBM) program in Korea in parallel with the breeding blanket development, which were based on the developed system codes in Gen. IV reactor development projects such as MARS (Multi-dimensional Analysis of Reactor Safety) and GAMMA (GAs Multi-component Mixture Analysis). Considering the unique and common features with both the Fusion and Gen. IV reactors, four approaches have been carried out: (1) modifying the heat transfer model and suggesting a 3D analysis for considering the one-sided heating with extreme temperature differences, (2) implementing a tritium permeation model for a simulation of its behavior and amount simulation in a fusion coolant system, (3) developing a physical properties generation model for PbLi and Li considering the liquid metal breeders in these codes, and (4) implementing the magnetohydrodynamics (MHD) model by Miyazaki et.al. To integrate these separate codes into single ones, called MARS-FR (Fusion Reactor) and GAMMA-FR, their environments were carefully handled during their development procedure.