ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Texas-based WCS chosen to manage U.S.-generated mercury
A five-year, $17.8 million contract has been awarded to Waste Control Specialists for the long-term management and storage of elemental mercury, the Department of Energy’s Office of Environmental Management announced on November 21.
L. El-Guebaly, A. Jaber, L. Mynsberge, ARIES-ACT Team
Fusion Science and Technology | Volume 64 | Number 3 | September 2013 | Pages 582-586
Nuclear Systems: Analysis and Experiments | Proceedings of the Twentieth Topical Meeting on the Technology of Fusion Energy (TOFE-2012) (Part 2) Nashville, Tennessee, August 27-31, 2012 | doi.org/10.13182/FST13-A19155
Articles are hosted by Taylor and Francis Online.
Just recently, the ARIES team completed the detailed design of ARIES-ACT-1 with aggressive physics and advanced SiC technology. The ability of the SiC/LiPb blanket to provide tritium self-sufficiency was among the important issues investigated in detail. To pinpoint the design elements that degrade the breeding the most, we developed a novel stepwise approach that involves building the CAD model from scratch, and, in multiple steps, adding the internals/externals of the blanket. At each step, the impact on the tritium breeding ratio (TBR) was recorded to identify the more damaging/enhancing conditions or changes to the tritium breeding. The TBR approaches 1.8 for an ideal system, and then degrades to 1.05 for the ARIES-ACT-1 reference design. This paper sheds light on several breeding-related issues that puzzled the fusion community for decades and gives insight about the impact on TBR of the individual blanket internals as well as other essential parts of the tokamak.