ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Fumito Okino, Kazuyuki Noborio, Ryuta Kasada, Satoshi Konishi
Fusion Science and Technology | Volume 64 | Number 3 | September 2013 | Pages 543-548
Fusion Technologies: Heating and Fueling | Proceedings of the Twentieth Topical Meeting on the Technology of Fusion Energy (TOFE-2012) (Part 2) Nashville, Tennessee, August 27-31, 2012 | doi.org/10.13182/FST12-546
Articles are hosted by Taylor and Francis Online.
Release of deuterium from falling droplets of Pb-17Li in vacuum is experimentally studied. By comparing different diameter nozzle data each other, the effect of ambiguous solution is eliminated, and reliable result is attained. The amount of deuterium that is dissolved into Pb-17Li, followed by the release from the liquid droplets in vacuum, is measured with four different diameter nozzles ranging from 0.4 mm-1.0 mm under an initial velocity of 3.0 m/s and four temperatures between 375 °C and 450 °C. The resultant mass transport, represented by quasi-dispersion-coefficient is 3.4 × 10-7 [m2/s], which is approximately two orders of magnitude faster than previous studies under static condition. It also revealed different temperature dependency. Cyclic deformation of the sphere shape is observed with a high speed movie camera. These results show the falling droplets of liquid Pb-17Li in vacuum follow the mass transfer mechanism under convection prior domain by self- excited oscillation. This result suggests that the tritium recovery method from a breeding liquid Pb-17Li blanket is viable when using multiple nozzles in vacuum for the extraction.