ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
S. J. Diem, D. T. Fehling, D. L. Hillis, A. R. Horton, A. Nagy, R. I. Pinsker, E. A. Unterberg
Fusion Science and Technology | Volume 64 | Number 3 | September 2013 | Pages 530-532
Fusion Technologies: Heating and Fueling | Proceedings of the Twentieth Topical Meeting on the Technology of Fusion Energy (TOFE-2012) (Part 2) Nashville, Tennessee, August 27-31, 2012 | doi.org/10.13182/FST13-A19147
Articles are hosted by Taylor and Francis Online.
Locating arcs within the fast wave current drive system is necessary to improve antenna performance and coupling to the plasma. Previously, there had been no way to observe arcs inside the vacuum vessel in an ICRF antenna on DIII-D. A new diagnostic that uses photomultiplier tubes has been installed for the 2012 run campaign on the 285/300 antenna of the fast wave system. The diagnostic has top and bottom views of the back of the four antenna straps and uses narrow-bandpass visible filters to isolate emission lines of copper (577 nm) and deuterium (656.1 nm). This diagnostic is based on the ORNL filterscope system currently in use on multiple devices. The system will be used to guide fast wave antenna conditioning, plasma operation and provide insight into future antenna upgrades on DIII-D.