ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
James P. Blanchard, Carl Martin
Fusion Science and Technology | Volume 64 | Number 3 | September 2013 | Pages 435-439
ARIES | Proceedings of the Twentieth Topical Meeting on the Technology of Fusion Energy (TOFE-2012) (Part 2) Nashville, Tennessee, August 27-31, 2012 | doi.org/10.13182/FST12-512
Articles are hosted by Taylor and Francis Online.
The ARIES project is currently proposing an all-tungsten divertor for their tokamak designs. In designing such a component, fracture will be a critical failure mechanism, due to the limited ductility of the tungsten. Hence, this paper presents a series of fracture mechanics-based analyses to demonstrate the feasibility of using an all-tungsten divertor in a commercial device. The analyses presented here employ a commercial finite element code (ANSYS) to carry out three-dimensional thermal, mechanical, and fracture calculations. Due to the inelastic deformations produced by the high temperatures and stresses in the component, the fracture calculations employ the J-Integral, a path-independent contour integral that estimates the strain energy release rate for a crack of assumed geometry. Elliptical surface cracks are introduced both inside and outside the coolant channel and steady state calculations are carried out for both full power and cold shutdown conditions. It is determined that the critical crack is on the inside of the coolant channel and the largest forcing is during full power. In addition, transient calculations are carried out to simulate edge localized modes (ELMs) in the plasma and conclusions are drawn with respect to the severity of these events and their effect on the lifetime of the component. Finally, thermal creep is considered as a potential failure mode.