ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
State legislation: Colorado redefines nuclear as “clean energy resource”
Colorado Gov. Jared Polis signed a bill into law on Monday that adds nuclear to the state’s clean energy portfolio—making nuclear power eligible for new sources of project financing at the state, county, and city levels.
Thomas Rummel, W7-X Team
Fusion Science and Technology | Volume 64 | Number 3 | September 2013 | Pages 387-396
Plenary II | Proceedings of the Twentieth Topical Meeting on the Technology of Fusion Energy (TOFE-2012) (Part 2) Nashville, Tennessee, August 27-31, 2012 | doi.org/10.13182/FST13-A19128
Articles are hosted by Taylor and Francis Online.
The Wendelstein 7-X (W7-X) experimental device is presently being built at the Max-Planck-Institute for Plasma Physics (IPP) in Greifswald, Germany.The modularity of the machine is achieved using five identical modules which form a torus of 16 meters outer diameter. Each module consists of a plasma vessel, ten non-planar main field coils, four planar coils and an outer vessel sector with ports. To achieve steady-state operation, the coils are superconducting. Two different plasma heating systems, ECRH and NBI, are planned for the first operation phase of W7-X.Module-based assembly is a new approach for large fusion machines. There are three main assembly steps of the core machine. First, half-modules are assembled from a plasma vessel section, five non-planar and two planar coils and related support structures. In the second step, two half-modules are connected to form a module. Then the five modules are connected, after which the outer vessel is closed.The paper reports on about the latest progress in assembly, highlighting the most challenging tasks, describes future work leading to the start of W7-X commissioning in 2014.