ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Nuclear News 40 Under 40 discuss the future of nuclear
Seven members of the inaugural Nuclear News 40 Under 40 came together on March 4 to discuss the current state of nuclear energy and what the future might hold for science, industry, and the public in terms of nuclear development.
To hear more insights from this talented group of young professionals, watch the “40 Under 40 Roundtable: Perspectives from Nuclear’s Rising Stars” on the ANS website.
J. M. Carmona, K. J. McCarthy, V. Tribaldos, R. Balbín
Fusion Science and Technology | Volume 54 | Number 4 | November 2008 | Pages 962-969
Technical Paper | doi.org/10.13182/FST08-A1911
Articles are hosted by Taylor and Francis Online.
First impurity ion temperature profiles obtained using an active diagnostic system, recently installed on the TJ-II stellarator, are presented. This diagnostic consists of a multichannel spectrometer and a compact diagnostic neutral beam injector system optimized for performing charge-exchange recombination spectroscopy. Here, after summarizing the experimental setup, details of the system alignment and calibration, as well as the data analysis method adopted, are presented. Next, impurity ion temperature profiles, determined from C VI emission line widths (at 529.06 nm), are presented for a range of plasma conditions (different densities plus two injected electron cyclotron resonance heating powers) in order to highlight the system capabilities. Then, the comportment of core impurity ion temperature for an electron density scan (4 × 1018 to 9 × 1018 m-3) is examined. It reveals a clear minimum between <ne> = 6 × 1018 and 8 × 1018 m-3 that coincides with the values for the transition from the electron-to-ion root of the radial electric field. Finally, these results are compared with ion temperatures determined by passive methods to evaluate the system performance, and the physics behind the observed impurity ion temperature behavior is examined.