ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
H. Würz, S. Pestchanyi, I. Landman, B. Bazylev, V. Tolkach, F. Kappler
Fusion Science and Technology | Volume 40 | Number 3 | November 2001 | Pages 191-246
Technical Paper | doi.org/10.13182/FST01-A191
Articles are hosted by Taylor and Francis Online.
The two-dimensional (2-D) radiation-magnetohydrodynamic (R-MHD) code FOREV-2 was developed for modeling of disruptive hot plasma-wall interaction, for calculation of erosion by evaporation of the ITER-FEAT vertical divertor target, and for calculation of the impurity transport in the divertor. FOREV-2 uses a 2 1/2-D MHD model, a 2-D scheme for anisotropic radiation transport, and a solution of the magnetic field equations in the plasma shield for all three components of the magnetic field. Details of FOREV-2 with emphasis on the MHD equations, the equations for the magnetic field, the vaporization model, the angular dependent multigroup radiation transport, and the optical properties of plasmas, and validation of FOREV-2 against analytical results are discussed.Moreover, disruption simulation experiments, performed at the plasma gun facilities at TRINITI Troitsk were used for validation of FOREV-2 and for investigations of the MHD of typical plasma shields. From the results of the numerical analysis of the simulation experiments, it is concluded that turbulence in the experimental plasma shields is absent and that the stability of the cold and dense part of the plasma shields, which determines the target erosion, can be adequately modeled by FOREV-2 by use of the classical magnetic field diffusion coefficient. The experimentally observed downstream drift of plasma shields along the surface of the vertical targets is due to the lateral motion of a cold and dense plasma layer close to the target. The observed upstream shift of the erosion profiles of vertical targets is due to reradiation from the expanding plasma shield. Line radiation and an appropriate model for anisotropic radiation transport are necessary for a realistic calculation of the reradiation from carbon plasma shields. Moreover, inclusion of the line radiation allows one to get a realistic radiation cooling after switching off the heating. Target erosion in the simulation experiments is caused by radiation. The agreement between calculated and measured erosion for graphite and quartz demonstrates the adequacy of the calculated 2-D radiative target heat loads.The 2-D numerical analysis of the disruption simulation experiments allows one to conclude that such experiments adequately simulate the tokamak plasma shield properties and its dynamics. The extensive validation exercise of FOREV-2 against disruption simulation experiments gives confidence that the numerical analysis of erosion for the ITER-FEAT vertical targets during the thermal quench phase of a disruption and the impurity production during ELMs and its transport toward the x-point to be performed with FOREV-2 is based on sound principles and covers all important aspects of plasma shield behavior and plasma shield stability.