ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Lester M. Waganer, Kevin T. Slattery, John C. Waldrop III, ARIES Team
Fusion Science and Technology | Volume 54 | Number 3 | October 2008 | Pages 878-889
Technical Paper | Aries-Cs Special Issue | doi.org/10.13182/FST08-A1908
Articles are hosted by Taylor and Francis Online.
One of the key factors that determine the competitiveness of any power plant is its capital cost. The premise for this study is that a more compact stellarator concept should result in a fusion power plant with lower capital costs that retains the attractive features of a stellarator with costs comparable to those of a tokamak power plant.One of the design innovations in the ARIES compact stellarator is a continuous monolithic coil structural shell conforming to the shape of the modular coils. This shell is structurally analyzed for electromagnetic and gravity forces to achieve tailored material thicknesses over the surface of the toroid. Fabricating such a complex structure with conventional means would be very challenging and costly.A new fabrication technology is "additive manufacturing" to create unique shapes directly from the computer-aided design definition file. Component size is not a limiting factor with this highly automated fabrication process. Multiple material deposition heads create the coil structure in a timely manner to near net shape. Heat treatment will remove residual stresses, followed by final machining of the internal coil grooves and attachment features. The fabrication cost was estimated to be less than one-third of the traditional fabrication methods.