ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Empowering the next generation: ANS’s newest book focuses on careers in nuclear energy
A new career guide for the nuclear energy industry is now available: The Nuclear Empowered Workforce by Earnestine Johnson. Drawing on more than 30 years of experience across 16 nuclear facilities, Johnson offers a practical, insightful look into some of the many career paths available in commercial nuclear power. To mark the release, Johnson sat down with Nuclear News for a wide-ranging conversation about her career, her motivation for writing the book, and her advice for the next generation of nuclear professionals.
When Johnson began her career at engineering services company Stone & Webster, she entered a field still reeling from the effects of the Three Mile Island incident in 1979, nearly 15 years earlier. Her hiring cohort was the first group of new engineering graduates the company had brought on since TMI, a reflection of the industry-wide pause in nuclear construction. Her first long-term assignment—at the Millstone site in Waterford, Conn., helping resolve design issues stemming from TMI—marked the beginning of a long and varied career that spanned positions across the country.
S. I. Abdel-Khalik, L. Crosatti, D. L. Sadowski, S. Shin, J. B. Weathers, M. Yoda, ARIES Team
Fusion Science and Technology | Volume 54 | Number 3 | October 2008 | Pages 864-877
Technical Paper | Aries-Cs Special Issue | doi.org/10.13182/FST08-A1907
Articles are hosted by Taylor and Francis Online.
This paper describes a numerical and experimental investigation in support of the ARIES-CS divertor design, which selected a modular, helium-cooled, T-tube design that can accommodate a peak heat load of 10 MW/m2. Numerical analyses were carried out using the FLUENT computational fluid dynamics software package to evaluate the thermal performance of the divertor at the nominal design and operating conditions. Sensitivity studies were also performed to determine the effect of variations in geometry and operating conditions resulting from manufacturing tolerances and/or flow maldistribution between modules. The results indicate that the selected design is "robust" with respect to such anticipated variations in design and operational parameters and that a peak heat flux of 10 MW/m2 can be accommodated within the constraints dictated by material properties. Extremely high heat transfer coefficients [>40 kW/(m2K)] were predicted by the numerical model; these values were judged to be "outside the experience base" for gas-cooled engineering systems. Hence, an experimental investigation was undertaken to verify the results of the numerical model. Variations of the local heat transfer coefficient within an air-cooled, geometrically similar test module were measured at the same Reynolds number as the actual helium-cooled divertor. Close agreement between the model predictions and experimental data was obtained. The results of this investigation provide added confidence in the results of the numerical model used to design the ARIES-CS divertor and its applicability to other gas-cooled high-heat flux components.