ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
X. R. Wang, A. R. Raffray, L. Bromberg, J. H. Schultz, L. P. Ku, J. F. Lyon, S. Malang, L. Waganer, L. El-Guebaly, C. Martin, ARIES Team
Fusion Science and Technology | Volume 54 | Number 3 | October 2008 | Pages 818-837
Technical Paper | Aries-Cs Special Issue | doi.org/10.13182/FST08-A1905
Articles are hosted by Taylor and Francis Online.
The ARIES-CS study focusing on the conceptual design and assessment of a compact stellarator power plant identified the important advantages and key issues associated with such a design. The coil configuration and structural support approach represent key design challenges, with the final design and material choices affected by a number of material and geometry constraints. This paper describes the design configuration and analysis and material choices for the ARIES-CS magnets and its structure. To meet aggressive cost and assembly/maintenance goals, the magnets are designed as lifetime components. Due to the very complex geometry, one of the goals of the study was to provide a robust operational design. This decision has significant implications on cost and manufacturing requirements. Concepts with both conventional and advanced superconductors have been explored. The coil structure design approach adopted is to wind all six modular coils of one field period in grooves in one monolithic coil structural shell (one per field period). The coil structural shells are then bolted together to form a strong structural shell to react the net radial forces. Extensive engineering analyses of the coil system have been performed using ANSYS shell and solid modeling. These include electromagnetic (EM) analyses to calculate the magnetic fields and EM forces and structural analyses to evaluate the structural responses and optimize the coil support system, which has a considerable impact on the cost of the ARIES-CS power plant.