ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
A. R. Raffray, L. El-Guebaly, S. Malang, X. R. Wang, L. Bromberg, T. Ihli, B. Merrill, L. Waganer, ARIES-CS Team
Fusion Science and Technology | Volume 54 | Number 3 | October 2008 | Pages 725-746
Technical Paper | Aries-Cs Special Issue | doi.org/10.13182/FST08-4
Articles are hosted by Taylor and Francis Online.
The ARIES-CS team has concluded an integrated study of a compact stellarator power plant, involving physics and engineering design optimization. Key engineering considerations include the size of the power core, access for maintenance, and the minimum distance required between the plasma and the coil to provide acceptable shielding and breeding. Our preferred power core option in a three-field-period configuration is a dual-coolant (He + Pb-17Li) ferritic steel modular blanket concept coupled with a Brayton power cycle and a port-based maintenance scheme. In parallel with a physics effort to help determine the location and peak heat load to the divertor, we developed a helium-cooled W alloy/ferritic steel divertor design able to accommodate 10 MW/m2. We also developed an intercoil structure design to accommodate the electromagnetic forces within each field period while allowing for penetrations required for maintenance, plasma control, coolant lines, and supporting legs for the in-vessel components.This paper summarizes the key engineering outcomes from the study. The engineering design of the fusion power core components (including the blanket and divertor) are described and key results from the supporting analyses presented, including stress analyses of the components and thermal-hydraulic analyses of the power core coupled to a Brayton cycle. The preferred port-based maintenance scheme is briefly described and the integration of the power core is discussed. The key stellarator-specific challenges affecting the design are highlighted, including the impact of the minimum plasma-coil distance, the maintenance, integration, and coil design requirements, and the need for alpha power accommodation.