ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
A. R. Raffray, L. El-Guebaly, S. Malang, X. R. Wang, L. Bromberg, T. Ihli, B. Merrill, L. Waganer, ARIES-CS Team
Fusion Science and Technology | Volume 54 | Number 3 | October 2008 | Pages 725-746
Technical Paper | Aries-Cs Special Issue | doi.org/10.13182/FST08-4
Articles are hosted by Taylor and Francis Online.
The ARIES-CS team has concluded an integrated study of a compact stellarator power plant, involving physics and engineering design optimization. Key engineering considerations include the size of the power core, access for maintenance, and the minimum distance required between the plasma and the coil to provide acceptable shielding and breeding. Our preferred power core option in a three-field-period configuration is a dual-coolant (He + Pb-17Li) ferritic steel modular blanket concept coupled with a Brayton power cycle and a port-based maintenance scheme. In parallel with a physics effort to help determine the location and peak heat load to the divertor, we developed a helium-cooled W alloy/ferritic steel divertor design able to accommodate 10 MW/m2. We also developed an intercoil structure design to accommodate the electromagnetic forces within each field period while allowing for penetrations required for maintenance, plasma control, coolant lines, and supporting legs for the in-vessel components.This paper summarizes the key engineering outcomes from the study. The engineering design of the fusion power core components (including the blanket and divertor) are described and key results from the supporting analyses presented, including stress analyses of the components and thermal-hydraulic analyses of the power core coupled to a Brayton cycle. The preferred port-based maintenance scheme is briefly described and the integration of the power core is discussed. The key stellarator-specific challenges affecting the design are highlighted, including the impact of the minimum plasma-coil distance, the maintenance, integration, and coil design requirements, and the need for alpha power accommodation.