ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The Frisch-Peierls memorandum: A seminal document of nuclear history
The Manhattan Project is usually considered to have been initiated with Albert Einstein’s letter to President Franklin Roosevelt in October 1939. However, a lesser-known document that was just as impactful on wartime nuclear history was the so-called Frisch-Peierls memorandum. Prepared by two refugee physicists at the University of Birmingham in Britain in early 1940, this manuscript was the first technical description of nuclear weapons and their military, strategic, and ethical implications to reach high-level government officials on either side of the Atlantic. The memorandum triggered the initiation of the British wartime nuclear program, which later merged with the Manhattan Engineer District.
J. F. Lyon, L. P. Ku, L. El-Guebaly, L. Bromberg, L. M. Waganer, M. C. Zarnstorff, ARIES-CS Team
Fusion Science and Technology | Volume 54 | Number 3 | October 2008 | Pages 694-724
Technical Paper | Aries-Cs Special Issue | doi.org/10.13182/FST54-694
Articles are hosted by Taylor and Francis Online.
A stellarator systems/optimization code is used to optimize the ARIES-CS fusion power plant parameters for minimum cost of electricity subject to a large number of physics, engineering, and in-vessel component constraints for a compact stellarator configuration. Different physics models, reactor component models, and costing algorithms are used to test sensitivities to models and assumptions. The most important factors determining the size of the fusion power core are the allowable neutron and radiative power fluxes to the wall, the distance needed between the edge of the plasma and the nonplanar magnetic field coils for the intervening components, and an adequate tritium breeding ratio. The magnetic field and coil parameters are determined from both plasma performance and constraints on the Nb3Sn superconductor. The same costing approach and algorithms used in previous ARIES studies are used with updated material costs. The result is a compact stellarator reactor with a major radius close to that of tokamaks. A one-dimensional power balance code is used to study the path to ignition and the effect of different plasma and confinement assumptions on plasma performance for the reference plasma and coil configuration. A number of variations are studied that affect the size and cost of the fusion power core: maximum field at the coils, component cost penalties, a different blanket and shield approach, alternative plasma and coil configurations, etc. Comparisons are made with some earlier ARIES power plant studies. A number of issues for the development of compact quasi-axisymmetric stellarators are identified.