ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
W. Brian Clarke, Brian M. Oliver, Michael C. H. McKubre, Francis L. Tanzella, Paolo Tripodi
Fusion Science and Technology | Volume 40 | Number 2 | September 2001 | Pages 152-167
Technical Paper | doi.org/10.13182/FST01-A190
Articles are hosted by Taylor and Francis Online.
Measurements have been made of 3He, 4He, and 3H in a sample containing 2.7% of the gas from the interior of an Arata-style hollow palladium electrode charged with ~5 g Pd-black that had undergone electrolysis in D2O as a cathode for 90 days and then as an anode for a further 83 days. There is no evidence for the much larger amounts of 4He observed by Arata and Zhang in similar experiments. However, a very large concentration has been found of 3He, 2.3 ± 0.5 × 1012 atoms/cm3 standard temperature and pressure that apparently can all be attributed to the decay of tritium produced during electrolysis. No direct production of 3He can be specified, a result that is also different from the conclusions of Arata and Zhang. The 3He and tritium measurements and the results of a gas analysis using a Finnigan-type mass spectrometer show that at the end of the anodic electrolysis, the electrode void contained 5.8 ± 0.7 × 1013 atoms tritium in the gas phase as HT, DT, and T2, and 1.7 ± 0.3 × 1015 atoms tritium in the aqueous phase as HTO, DTO, and T2O. At this stage, the gas phase pressure was ~18.8 atm in a free volume of 0.6 cm3, and the total mass of water was ~5.7 mg. The gas phase tritium value is viewed as a lower limit for gaseous tritium produced inside the electrode because some of that tritium must have been removed into the D2O electrolyte during the anodic episode.The 3He and 4He measurements were also made in the two samples of the Pd-black and in sections cut from the walls of both Pd electrodes. The H2O electrolyzed samples did not show any evidence of unusually high 3He and/or 4He, but all the D2O electrolyzed samples showed clear evidence of 3He from tritium decay. A stepwise temperature heating experiment performed with a 24.9-mg sample of the D2O Pd-black showed that the diffusion process for 3He can be described by an equation of the form D = D0 exp(-U/kT) with an activation energy U of 1.1 eV. It is also apparent that the 3He from tritium is quantitatively retained in the Pd-black at room temperature.