ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
W. Brian Clarke, Brian M. Oliver, Michael C. H. McKubre, Francis L. Tanzella, Paolo Tripodi
Fusion Science and Technology | Volume 40 | Number 2 | September 2001 | Pages 152-167
Technical Paper | doi.org/10.13182/FST01-A190
Articles are hosted by Taylor and Francis Online.
Measurements have been made of 3He, 4He, and 3H in a sample containing 2.7% of the gas from the interior of an Arata-style hollow palladium electrode charged with ~5 g Pd-black that had undergone electrolysis in D2O as a cathode for 90 days and then as an anode for a further 83 days. There is no evidence for the much larger amounts of 4He observed by Arata and Zhang in similar experiments. However, a very large concentration has been found of 3He, 2.3 ± 0.5 × 1012 atoms/cm3 standard temperature and pressure that apparently can all be attributed to the decay of tritium produced during electrolysis. No direct production of 3He can be specified, a result that is also different from the conclusions of Arata and Zhang. The 3He and tritium measurements and the results of a gas analysis using a Finnigan-type mass spectrometer show that at the end of the anodic electrolysis, the electrode void contained 5.8 ± 0.7 × 1013 atoms tritium in the gas phase as HT, DT, and T2, and 1.7 ± 0.3 × 1015 atoms tritium in the aqueous phase as HTO, DTO, and T2O. At this stage, the gas phase pressure was ~18.8 atm in a free volume of 0.6 cm3, and the total mass of water was ~5.7 mg. The gas phase tritium value is viewed as a lower limit for gaseous tritium produced inside the electrode because some of that tritium must have been removed into the D2O electrolyte during the anodic episode.The 3He and 4He measurements were also made in the two samples of the Pd-black and in sections cut from the walls of both Pd electrodes. The H2O electrolyzed samples did not show any evidence of unusually high 3He and/or 4He, but all the D2O electrolyzed samples showed clear evidence of 3He from tritium decay. A stepwise temperature heating experiment performed with a 24.9-mg sample of the D2O Pd-black showed that the diffusion process for 3He can be described by an equation of the form D = D0 exp(-U/kT) with an activation energy U of 1.1 eV. It is also apparent that the 3He from tritium is quantitatively retained in the Pd-black at room temperature.