ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
F. Najmabadi, A. R. Raffray, ARIES-CS Team: S. I. Abdel-Khalik, L. Bromberg, L. Crosatti, L. El-Guebaly, P. R. Garabedian, A. A. Grossman, D. Henderson, A. Ibrahim, T. Ihli, T. B. Kaiser, B. Kiedrowski, L. P. Ku, J. F. Lyon, R. Maingi, S. Malang, C. Martin, T. K. Mau, B. Merrill, R. L. Moore, R. J. Peipert, Jr., D. A. Petti, D. L. Sadowski, M. Sawan, J. H. Schultz, R. Slaybaugh, K. T. Slattery, G. Sviatoslavsky, A. Turnbull, L. M. Waganer, X. R. Wang, J. B. Weathers, P. Wilson, J. C. Waldrop III, M. Yoda, M. Zarnstorff
Fusion Science and Technology | Volume 54 | Number 3 | October 2008 | Pages 655-672
Technical Paper | Aries-Cs Special Issue | doi.org/10.13182/FST54-655
Articles are hosted by Taylor and Francis Online.
An integrated study of compact stellarator power plants, ARIES-CS, has been conducted to explore attractive compact stellarator configurations and to define key research and development (R&D) areas. The large size and mass predicted by earlier stellarator power plant studies had led to cost projections much higher than those of the advanced tokamak power plant. As such, the first major goal of the ARIES-CS research was to investigate if stellarator power plants can be made to be comparable in size to advanced tokamak variants while maintaining desirable stellarator properties. As stellarator fusion core components would have complex shapes and geometry, the second major goal of the ARIES-CS study was to understand and quantify, as much as possible, the impact of the complex shape and geometry of fusion core components. This paper focuses on the directions we pursued to optimize the compact stellarator as a fusion power plant, summarizes the major findings from the study, highlights the key design aspects and constraints associated with a compact stellarator, and identifies the major issues to help guide future R&D.