ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
F. Najmabadi, A. R. Raffray, ARIES-CS Team: S. I. Abdel-Khalik, L. Bromberg, L. Crosatti, L. El-Guebaly, P. R. Garabedian, A. A. Grossman, D. Henderson, A. Ibrahim, T. Ihli, T. B. Kaiser, B. Kiedrowski, L. P. Ku, J. F. Lyon, R. Maingi, S. Malang, C. Martin, T. K. Mau, B. Merrill, R. L. Moore, R. J. Peipert, Jr., D. A. Petti, D. L. Sadowski, M. Sawan, J. H. Schultz, R. Slaybaugh, K. T. Slattery, G. Sviatoslavsky, A. Turnbull, L. M. Waganer, X. R. Wang, J. B. Weathers, P. Wilson, J. C. Waldrop III, M. Yoda, M. Zarnstorff
Fusion Science and Technology | Volume 54 | Number 3 | October 2008 | Pages 655-672
Technical Paper | Aries-Cs Special Issue | doi.org/10.13182/FST54-655
Articles are hosted by Taylor and Francis Online.
An integrated study of compact stellarator power plants, ARIES-CS, has been conducted to explore attractive compact stellarator configurations and to define key research and development (R&D) areas. The large size and mass predicted by earlier stellarator power plant studies had led to cost projections much higher than those of the advanced tokamak power plant. As such, the first major goal of the ARIES-CS research was to investigate if stellarator power plants can be made to be comparable in size to advanced tokamak variants while maintaining desirable stellarator properties. As stellarator fusion core components would have complex shapes and geometry, the second major goal of the ARIES-CS study was to understand and quantify, as much as possible, the impact of the complex shape and geometry of fusion core components. This paper focuses on the directions we pursued to optimize the compact stellarator as a fusion power plant, summarizes the major findings from the study, highlights the key design aspects and constraints associated with a compact stellarator, and identifies the major issues to help guide future R&D.