ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
Armando B. Antoniazzi, Clive S. Morton, Kevin P. Chen, Baojun Liu
Fusion Science and Technology | Volume 54 | Number 2 | August 2008 | Pages 635-638
Technical Paper | Process Applications | doi.org/10.13182/FST08-A1895
Articles are hosted by Taylor and Francis Online.
A tritium exposure apparatus has been designed and built for the purposes of generating a high-pressure tritium atmosphere at 523 K. The loading system consists of a uranium tritide storage bed, an intermediate tritium transfer chamber filled with 5A molecular sieve, and the sample exposure chamber. The loading system resides in a sealed glovebox with a nitrogen atmosphere that is continually purged through a Glovebox Clean-up System. The tritium used in each loading experiment is approximately 6000 Ci (22 TBq). The process entails transferring the tritium inventory from the uranium storage bed to the cryogenically cooled (77 K) molecular sieve chamber. The molecular sieve at liquid nitrogen temperature is capable of adsorbing tritium to densities of 290 Ci/gram at one atmosphere. At 523 K a maximum tritium pressure of 21 MPa is achieved. The loading apparatus is used to develop high-density radioactive isotope fuel for self-powered microelectronic and micromechanical devices. This paper presents the design specifics of the tritium exposure apparatus, the steps taken in generating the high-temperature, high-pressure tritium atmosphere and the performance characteristics of the apparatus. Additionally, the handling practices and equipment utilized to conduct the tests safely are presented.