ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Discovering, Making, and Testing New Materials: SRNL’s Center For Hierarchical Waste Form Materials
Savannah River National Laboratory researchers are building on the laboratory’s legacy of using cutting-edge science to effectively immobilize nuclear waste in innovative ways. As part of the Center for Hierarchical Waste Form Materials, SRNL is leveraging its depth of experience in radiological waste management to explore new frontiers in the industry.
Baojun Liu, Diego Alvarez-Ossa, Nazir P. Kherani, Stefan Zukotynski, Kevin P. Chen
Fusion Science and Technology | Volume 54 | Number 2 | August 2008 | Pages 631-634
Technical Paper | Process Applications | doi.org/10.13182/FST08-A1894
Articles are hosted by Taylor and Francis Online.
A smoke and particle ionization detector using tritiated amorphous silicon film as the radiation source is demonstrated. The ion chamber design includes both bipolar and unipolar region; the unipolar region is defined as the volume space extending beyond the range of ionizing particles. Attachment of ions to particulate matter in the unipolar region considerably reduces the mobility of the carriers, thus forming a space charge cloud accompanied by a reduction in the electrical field strength, thereby enhancing the particulate detection responsivity. Tritium s have a maximum range of about 6 mm in air, which makes the detector compact. Owing to the potential of increased specific activity, it results in a gamma-free detector with improved sensitivity. The results show that this gamma-free detector is several-fold to forty-fold more responsive than traditional ionization detectors using Am-241. In addition, this ion chamber can function as a dual detector having both photoelectric and ionization detector responsivities.