ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Hash Hashemian: Visionary leadership
As Dr. Hashem M. “Hash” Hashemian prepares to step into his term as President of the American Nuclear Society, he is clear that he wants to make the most of this unique moment.
A groundswell in public approval of nuclear is finding a home in growing governmental support that is backed by a tailwind of technological innovation. “Now is a good time to be in nuclear,” Hashemian said, as he explained the criticality of this moment and what he hoped to accomplish as president.
Baojun Liu, Nazir P. Kherani, Stefan Zukotynski, Armando B. Antoniazzi, Kevin P. Chen
Fusion Science and Technology | Volume 54 | Number 2 | August 2008 | Pages 627-630
Technical Paper | Process Applications | doi.org/10.13182/FST08-A1893
Articles are hosted by Taylor and Francis Online.
We report on a simple and versatile method for the integration of tritium in semiconductor materials. A variety of semiconductor materials are exposed to tritium (T2) gas at pressures of up to 120 bar and temperatures of up to 250 °C. Tritiated materials include hydrogenated amorphous silicon (a-Si:H), crystalline silicon (c-Si), silica and carbon nanotubes (CNT). Deep ultra-violet laser irradiation was used to lock tritium in silica films. Effusion measurements show the presence of stable tritium in silicon, silica and CNTs up to 400 °C. IR absorption spectra show a Si-T stretching mode at 1200 cm-1 indicating the formation of stable Si-T bonds in a-Si:H. SIMS measurements show that the penetration depth of tritium in a-Si:H and c-Si is 150 and 10 nm, respectively; the concentration of tritium locked in a-Si:H and c-Si is 20 and 4 at.%, respectively. In tritiated silica, 248-nm UV laser irradiation locks the permeated tritium at stable chemical bonding sites in the silica lattice. Thermal effusion measurement shows that 0.5 wt.% tritium can be stably immobilized in CNTs. The application of tritiated silicon as a cold electron source is demonstrated.