ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
Baojun Liu, Nazir P. Kherani, Stefan Zukotynski, Armando B. Antoniazzi, Kevin P. Chen
Fusion Science and Technology | Volume 54 | Number 2 | August 2008 | Pages 627-630
Technical Paper | Process Applications | doi.org/10.13182/FST08-A1893
Articles are hosted by Taylor and Francis Online.
We report on a simple and versatile method for the integration of tritium in semiconductor materials. A variety of semiconductor materials are exposed to tritium (T2) gas at pressures of up to 120 bar and temperatures of up to 250 °C. Tritiated materials include hydrogenated amorphous silicon (a-Si:H), crystalline silicon (c-Si), silica and carbon nanotubes (CNT). Deep ultra-violet laser irradiation was used to lock tritium in silica films. Effusion measurements show the presence of stable tritium in silicon, silica and CNTs up to 400 °C. IR absorption spectra show a Si-T stretching mode at 1200 cm-1 indicating the formation of stable Si-T bonds in a-Si:H. SIMS measurements show that the penetration depth of tritium in a-Si:H and c-Si is 150 and 10 nm, respectively; the concentration of tritium locked in a-Si:H and c-Si is 20 and 4 at.%, respectively. In tritiated silica, 248-nm UV laser irradiation locks the permeated tritium at stable chemical bonding sites in the silica lattice. Thermal effusion measurement shows that 0.5 wt.% tritium can be stably immobilized in CNTs. The application of tritiated silicon as a cold electron source is demonstrated.