ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
C. J. Caldwell-Nichols, H.-D. Adami, N. Bekris, D. Demange, M. Glugla, F. Kramer, K.-H. Simon
Fusion Science and Technology | Volume 54 | Number 2 | August 2008 | Pages 599-602
Technical Paper | Process Applications | doi.org/10.13182/FST08-A1886
Articles are hosted by Taylor and Francis Online.
After 8 years of operation at the CAPER facility at the Tritium Laboratory Karlsruhe, a permeator used to separate hydrogen species from processed gases ceased operation due to multiple heater failures. This was subjected to post service examination to find the cause of the failures. This paper describe the methods used to locate the failures in the heaters and the likely cause. It was also necessary to determine the tritium inventory embedded in the structure for safe disposal. Destructive examination, adapted from a full combustion technique, was used on sections of the permeator. A fine black powder deposit, presumed to be mostly carbon, coated the surfaces of the inlet section of the feed side. This powder contained nearly half of the tritium within the permeator. The likely source of the powder and the consequences for the operation and eventual decommissioning of the ITER Tritium Plant are discussed. A failed turbomolecular pump from CAPER was also examined. There was evidence of wear on the emergency support bearing, but more importantly, when the pump internals were exposed to the glove box atmosphere (dry air) large quantities of tritium were rapidly released, this despite the isotopic swamping before removal from the CAPER glove box. Significant uptake of tritium in electrical insulation was also found.