ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
Joseph R. Wermer et al.
Fusion Science and Technology | Volume 54 | Number 2 | August 2008 | Pages 569-575
Technical Paper | Materials Interactions | doi.org/10.13182/FST08-A1880
Articles are hosted by Taylor and Francis Online.
A set of laser implosion experiments were conducted at the OMEGA laser at the University of Rochester, Laboratory for Laser Energetics (LLE) to study the effect of 3He concentration in DT-filled target shells on fusion yield in ICF implosions. Eleven laser fusion shells consisting of 1100-m diameter, hollow, fused silica spheres with 4.6 to 4.7-m-thick walls were loaded with 520 kPa of deuterium-tritium (DT) and then with 3He (101.3 or 520 kPa). The 3He permeabilities of the shells were determined by measuring the pressure rate of rise into a system with known volume. A mathematical method was developed that relied on the experimental fill pressure and time, and the rate of rise data to solve differential equations using MathCAD to simultaneously calculate 3He permeability and initial 3He partial pressure inside the shell. Because of the high permeation rate for 3He out of the shells compared to that for DT gas, shells had to be recharged with 3He immediately before being laser imploded or "shot" at LLE. The 3He partial pressure in each individual shell at shot time was calculated from the measured 3He permeability. Two different partial pressures of 3He inside the shell were shown to reduce neutron and gamma yields during implosion.