ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
K. Hashizume et al.
Fusion Science and Technology | Volume 54 | Number 2 | August 2008 | Pages 553-556
Technical Paper | Materials Interactions | doi.org/10.13182/FST08-A1876
Articles are hosted by Taylor and Francis Online.
Characteristics of the tritium diffusion coefficient DT in V-4Cr-4Ti alloy, including a bending in the Arrhenius plot of DT, are examined. Based on a trap model, the possible trap sources and their binding energies for tritium in the alloy are evaluated using the experimental data of DT in pure V, which are measured with a tritium tracer method, and the literature data of protium diffusion in V-Ti and V-Cr alloys. The result of the evaluation suggests the presence of two trap sources in the alloy. The first would be attributed to a trap at each substitutional alloying atom which is likely to be Ti. The binding energy EB of 0.08 eV gives the best fit to the observed value of DT above 300 K. The bending in the Arrhenius plot below 300 K is caused by a second trap site with a higher EB, and a lower concentration than those of each alloying atom. The trap is probably formed by the alloying atoms presence to neighboring Ti atoms. The contribution of Cr atom to the trap effect seems to be rather small in this alloy.