ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Yuji Hatano, Andrei Busnyuk, Vasily Alimov, Alexander Livshits, Yukio Nakamura, Masao Matsuyama
Fusion Science and Technology | Volume 54 | Number 2 | August 2008 | Pages 526-529
Technical Paper | Materials Interactions | doi.org/10.13182/FST08-A1869
Articles are hosted by Taylor and Francis Online.
Group 5 metals (V, Nb and Ta) are potential candidates of tube material in vacuum permeator for tritium recovery from Pb-17Li liquid blanket system. From this viewpoint, the influence of oxygen on the surface reaction rates of hydrogen on V and Ta were examined in an ultra-high vacuum apparatuses at elevated temperatures, and the results were compared with the data on Nb acquired in a previous study. The surface reaction rates of hydrogen on V and Ta, and consequently permeation rates, decreased with increasing oxygen concentration in the bulk as previously observed for Nb. These observations were ascribed to the increase in surface oxygen coverage with increasing bulk oxygen concentration. The weakest influence of oxygen on hydrogen permeation rate was observed for V. The expected permeation rate through V under typical blanket conditions, however, was not necessarily high due to high oxygen solubility in V. The evaluation indicated that the highest permeation rate should be obtained with Nb under typical blanket conditions.