ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
M. J. Quinlan, W. T. Shmayda, S. Lim, S. Salnikov, Z. Chambers, E. Pollock, W. U. Schröder
Fusion Science and Technology | Volume 54 | Number 2 | August 2008 | Pages 519-522
Technical Paper | Materials Interactions | doi.org/10.13182/FST54-519
Articles are hosted by Taylor and Francis Online.
Tritiated stainless steel was subjected to thermal desorption at various temperatures, different temperature profiles, and in the presence of different helium carrier gas additives. In all cases the identities of the desorbing tritiated species were characterized as either watersoluble or insoluble. The samples were found to contain 1.1 mCi±0.4 mCi. Approximately ninety-five percent of this activity was released in molecular water-soluble form. Additives of H2O or H2O2 to dry helium carrier gas increase the desorption rate and lower the maximum temperature to which the sample must be heated, in order to remove the bulk of the tritium. The measurements validate a method of decontamination of tritiated steel and suggest a technique that can be used to further explore the mechanisms of desorption from tritiated metals.