ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
Yasunori Iwai, Toshihiko Yamanishi, Akihiro Hiroki, Toshiaki Yagi, Masao Tamada
Fusion Science and Technology | Volume 54 | Number 2 | August 2008 | Pages 458-461
Technical Paper | Water Processing | doi.org/10.13182/FST08-A1853
Articles are hosted by Taylor and Francis Online.
A solid-polymer-electrolyte (SPE) water electrolyzer for high-level tritiated water was designed for the Water Detritiation System (WDS). Polymeric materials were selected from a main viewpoint of radiation durability to keep their functions beyond ITER-WDS requirement (530kGy). Our selection was Pt + Ir applied Nafion® N117 ion exchange membrane, VITON® O-ring seal and polyimide insulator. A -ray irradiation test of the SPE cell demonstrated the durability of the cell against 530kGy. The electrolyzer is designed to handle around 9TBq/kg of high-level tritiated water. The detritiation of the polymeric materials is thus a critical problem for the maintenance or for the disposal of the electrolyzer. As for the Nafion membrane, most of tritiated water in the membrane was rapidly removed by such as vacuum dehydration. It was difficult, by contrast, to remove bound tritiated water in the membrane. An effective method to remove tritiated water in the bound water is to promote an isotope exchange.