ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Yasunori Iwai, Toshihiko Yamanishi, Akihiro Hiroki, Toshiaki Yagi, Masao Tamada
Fusion Science and Technology | Volume 54 | Number 2 | August 2008 | Pages 458-461
Technical Paper | Water Processing | doi.org/10.13182/FST08-A1853
Articles are hosted by Taylor and Francis Online.
A solid-polymer-electrolyte (SPE) water electrolyzer for high-level tritiated water was designed for the Water Detritiation System (WDS). Polymeric materials were selected from a main viewpoint of radiation durability to keep their functions beyond ITER-WDS requirement (530kGy). Our selection was Pt + Ir applied Nafion® N117 ion exchange membrane, VITON® O-ring seal and polyimide insulator. A -ray irradiation test of the SPE cell demonstrated the durability of the cell against 530kGy. The electrolyzer is designed to handle around 9TBq/kg of high-level tritiated water. The detritiation of the polymeric materials is thus a critical problem for the maintenance or for the disposal of the electrolyzer. As for the Nafion membrane, most of tritiated water in the membrane was rapidly removed by such as vacuum dehydration. It was difficult, by contrast, to remove bound tritiated water in the membrane. An effective method to remove tritiated water in the bound water is to promote an isotope exchange.