ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
My story: Stanley Levinson—ANS member since 1983
Levinson early in his career and today.
As a member of the American Nuclear Society, I have been to many conferences. The International Conference on Probabilistic Safety Assessment and Analysis (PSA ’25), embedded in ANS Annual Meeting in Chicago in June, held special significance for me with the PSA ’25 opening plenary session recognizing the 50th anniversary of the publication of WASH-1400, which helped define my career. Reflecting on that milestone sent me back to 1975, when I was just an undergraduate student studying nuclear engineering at Rensselaer Polytechnic Institute (RPI) in Troy, N.Y., focusing on my mechanics, fluids, and thermodynamic classes as well as my first set of nuclear engineering classes. At that time—and many times since—the question “Why nuclear engineering?” was raised.
I. Cristescu et al.
Fusion Science and Technology | Volume 54 | Number 2 | August 2008 | Pages 440-445
Technical Paper | Water Processing | doi.org/10.13182/FST08-A1849
Articles are hosted by Taylor and Francis Online.
The ITER Isotope Separation System (ISS) and Water Detritiation System (WDS) should be integrated in order to reduce potential chronic tritium emissions from the ISS. This is achieved by routing the top (protium) product from the ISS to a feed point near the bottom end of the WDS Liquid Phase Catalytic Exchange (LPCE) column. This provides an additional barrier against ISS emissions and should mitigate the memory effects due to process parameter fluctuations in the ISS. To support the research activities needed to characterize the performances of various components for WDS and ISS processes under various working conditions and configurations as needed for ITER design, an experimental facility called TRENTA representative of the ITER WDS and ISS protium separation column, has been commissioned and is in operation at TLK.The experimental program on TRENTA facility is conducted to provide the necessary design data related to the relevant ITER operating modes. The operation availability and performances of ISS-WDS have impact on ITER fuel cycle subsystems with consequences on the design integration. The preliminary experimental data on TRENTA facility are presented.