ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Zhongliang Shi, Jerzy A. Szpunar, Shanqiang Wu
Fusion Science and Technology | Volume 54 | Number 2 | August 2008 | Pages 430-433
Technical Paper | Isotope Separation | doi.org/10.13182/FST08-A1847
Articles are hosted by Taylor and Francis Online.
The progress of electroless deposition of palladium around the pore area at surface of porous stainless steel was recorded in order to understand membrane formation and to control the membrane quality. A bridge structure is formed during the membrane formation around the pore area of the substrate. The porous substrate was modified to be smooth using micro-or nano-size metal or metal oxide particles in order to make sure that palladium membrane is strongly supported by the substrate and as the result the membrane thickness can be further reduced. The experimental results obtained from hydrogen permeation through the palladium membranes having the thickness from 400 nm to 18 m demonstrate that these thin membranes are solid and they can be used at the temperature of 550°C and hydrogen pressure difference of 350 kPa. The proposed processing will allow optimizing the design and fabrication of thin palladium membranes for hydrogen separation.