ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Discovering, Making, and Testing New Materials: SRNL’s Center For Hierarchical Waste Form Materials
Savannah River National Laboratory researchers are building on the laboratory’s legacy of using cutting-edge science to effectively immobilize nuclear waste in innovative ways. As part of the Center for Hierarchical Waste Form Materials, SRNL is leveraging its depth of experience in radiological waste management to explore new frontiers in the industry.
K. Kotoh, M. Tanaka, Y. Nakamura, T. Sakamoto, Y. Asakura, T. Uda, T. Sugiyama
Fusion Science and Technology | Volume 54 | Number 2 | August 2008 | Pages 411-414
Technical Paper | Isotope Separation | doi.org/10.13182/FST08-A1842
Articles are hosted by Taylor and Francis Online.
Focusing on synthetic zeolites that adsorb hydrogen isotopes at liquid N2 temperature with priority in the order of T2, DT, D2, HT, HD and H2, we have been developing a pressure swing adsorption process system for hydrogen isotope separation. For this purpose, we carried out fundamental experiments of adsorption and desorption of a tracer D2 in bulk H2 with zeolite packedbed columns. In this paper, the results are reported that D2 is enriched in the adsorbed phase at separation factors near 2.0, flowing through zeolite 5A and 13X packed-beds at 77.4 K. These are in agreement with values predicted from the multi-component equilibrium characteristics. In the gas samples recovered by evacuating the packed-beds, however, D2 was detected at a relative concentration of 1.20 or 1.32 to that in the feed gas. This lower range results from the isotopic mass effect in kinetic process. That suggests a highly D2-enriched residual left during evacuation. This is verified with an unusually high enrichment factor of 6.68 or 9.21 for zeolite 5A or 13X measured in the residual sample desorbed from the packed-bed by heating up to room temperature.