ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
K. Kotoh, M. Tanaka, Y. Nakamura, T. Sakamoto, Y. Asakura, T. Uda, T. Sugiyama
Fusion Science and Technology | Volume 54 | Number 2 | August 2008 | Pages 411-414
Technical Paper | Isotope Separation | doi.org/10.13182/FST08-A1842
Articles are hosted by Taylor and Francis Online.
Focusing on synthetic zeolites that adsorb hydrogen isotopes at liquid N2 temperature with priority in the order of T2, DT, D2, HT, HD and H2, we have been developing a pressure swing adsorption process system for hydrogen isotope separation. For this purpose, we carried out fundamental experiments of adsorption and desorption of a tracer D2 in bulk H2 with zeolite packedbed columns. In this paper, the results are reported that D2 is enriched in the adsorbed phase at separation factors near 2.0, flowing through zeolite 5A and 13X packed-beds at 77.4 K. These are in agreement with values predicted from the multi-component equilibrium characteristics. In the gas samples recovered by evacuating the packed-beds, however, D2 was detected at a relative concentration of 1.20 or 1.32 to that in the feed gas. This lower range results from the isotopic mass effect in kinetic process. That suggests a highly D2-enriched residual left during evacuation. This is verified with an unusually high enrichment factor of 6.68 or 9.21 for zeolite 5A or 13X measured in the residual sample desorbed from the packed-bed by heating up to room temperature.