ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
T. Duffy, W. T. Shmayda, R. Janezic, S. J. Loucks, J. Reid
Fusion Science and Technology | Volume 54 | Number 2 | August 2008 | Pages 379-382
Technical Paper | Tritium and Inertial Fusion | doi.org/10.13182/FST08-A1835
Articles are hosted by Taylor and Francis Online.
The OMEGA laser at the University of Rochester's Laboratory for Laser Energetics (UR/LLE) implodes fusion targets that contain cryogenic solid deuterium-tritium (DT) ice layers. These ICF targets are fabricated in a high-pressure DT-fill process. This paper describes the integration and control of this DT-fill process.The appropriate safety-control response during the DT-fill process depends on the location of the tritium inventory and where the containment alarm is detected. A control response that is deemed appropriate earlier in the fill process could be a dangerous action at a later point in the fill process. The control system must adapt as the DT inventory moves through the process train.This is achieved by defining eight "fill states" in the fill process. The control system transitions to the appropriate fill state as the DT fill progresses. The fill state reflects the tritium location, pressure, and temperature. Steps are taken to ensure that the tritium location and the fill state are in agreement. The control system monitors the containment system's integrity and will take the appropriate action, based on the tritium location and the type of containment failure. This approach not only ensures process safety, but also maximizes the productivity by executing process pauses (in lieu of aborts) when conditions allow.