ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Discovering, Making, and Testing New Materials: SRNL’s Center For Hierarchical Waste Form Materials
Savannah River National Laboratory researchers are building on the laboratory’s legacy of using cutting-edge science to effectively immobilize nuclear waste in innovative ways. As part of the Center for Hierarchical Waste Form Materials, SRNL is leveraging its depth of experience in radiological waste management to explore new frontiers in the industry.
Edward I. Moses
Fusion Science and Technology | Volume 54 | Number 2 | August 2008 | Pages 361-366
Technical Paper | Tritium and Inertial Fusion | doi.org/10.13182/FST08-A1831
Articles are hosted by Taylor and Francis Online.
The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory will be the world's largest and most powerful laser system for inertial confinement fusion (ICF) and experiments studying high energy density (HED) science. NIF is a 192 beam Ndglass laser facility that will produce 1.8 MJ, 500 TW of ultraviolet light making it over fifty times more energetic than present ICF facilities. The NIF Project began in 1995 and is scheduled for completion in 2009. Ignition experiments on NIF, which will use tritium, are scheduled to begin in 2010. Tritium will arrive at the facility in individual target assemblies. The assemblies will be mounted to the Cryogenic TARget POSitioner (TARPOS), which provides the cryogenic cooling systems necessary to complete the formation of the ignition target's fuel ice layer. It also provides the positioning system that transports and holds the target at the center of the NIF chamber during a shot. After a shot, unburned tritium will be captured by the cryopumps. Upon regeneration, the cryopump effluent will be directed to the Tritium Processing System, part of NIF's. Personnel and Environmental Protection Systems. These systems also include, local contamination control systems, area and stack tritium monitoring systems, a decontamination area, and waste packaging and characterization capability. This equipment will be used along with standard contamination control practices to manage the tritium hazard to workers and to limit releases to the environment to negligibly small amounts.