ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Discovering, Making, and Testing New Materials: SRNL’s Center For Hierarchical Waste Form Materials
Savannah River National Laboratory researchers are building on the laboratory’s legacy of using cutting-edge science to effectively immobilize nuclear waste in innovative ways. As part of the Center for Hierarchical Waste Form Materials, SRNL is leveraging its depth of experience in radiological waste management to explore new frontiers in the industry.
Shinji Sugihara, Atsushi Hirose, Noriyuki Momoshima, Yonezo Maeda
Fusion Science and Technology | Volume 54 | Number 1 | July 2008 | Pages 289-292
Technical Paper | Environment and Safety | doi.org/10.13182/FST08-A1815
Articles are hosted by Taylor and Francis Online.
The levels of tritium in the atmosphere nowadays are those of natural origin before the nuclear test. Nuclear power stations, nuclear reprocessing plants and fusion facilities are observed as a further occurrence source. Then, in order to appraise the influence of nuclear facilities and long distance transport from the continent where tritium level is relatively high, it is necessary to investigate background levels of tritium.Tritium concentrations of 34 river waters and 6 lake waters in Japan were determined by low background liquid scintillation measurement system combined with the electrolysis using solid polymer electrolyte.Tritium concentrations of river and lake water were 0.36-2.66 Bq/l (average 1.06±0.60 Bq/l) and 0.48-1.43 Bq/l (average 0.81±0.37 Bq/l), respectively. The entire mean value was 1.03±0.57 Bq/l. This mean value equals 43% of the mean value which was measured in 1982. It was possible to calculate 11 years as an apparent half-life.