ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
X-energy, Dow apply to build an advanced reactor project in Texas
Dow and X-energy announced today that they have submitted a construction permit application to the Nuclear Regulatory Commission for a proposed advanced nuclear project in Seadrift, Texas. The project could begin construction later this decade, but only if Dow confirms “the ability to deliver the project while achieving its financial return targets.”
Jeffrey Doody, Robert Granetz, Bruce Lipschultz, Han Zhang, Peter Titus, Rui Vieira
Fusion Science and Technology | Volume 64 | Number 2 | August 2013 | Pages 320-324
Divertor and High-Heat-Flux Components | Proceedings of the Twentieth Topical Meeting on the Technology of Fusion Energy (TOFE-2012) (Part 1), Nashville, Tennessee, August 27-31, 2012 | doi.org/10.13182/FST13-A18097
Articles are hosted by Taylor and Francis Online.
A new outer divertor is being designed for installation on Alcator C-Mod. This divertor will be toroidally continuous such that the currents during a disruption will be driven in the toroidal direction and not cross Alcator's large toroidal field and it eliminates leading edges. However, currents will still cross the poloidal fields, and so it is important to properly predict the poloidal fields in the area of the divertor so that we can properly predict the loads on the divertor during a disruption. To that end, an ANSYS model has been built which can predict the fields and field transients in C-Mod given two inputs, the currents for the toroidal and poloidal field coils which come from measured data taken during a discharge, and the current in the plasma, which comes from another model that solves Maxwell's equations to reconstruct the plasma as 24 current carrying filaments. The advantage of using this method to predict fields is that it provides the ability to create a model based on actual measured data and to model whichever type of disruption, whether a midplane disruption or a vertical displacement event, is deemed necessary for the design. The ANSYS model then is able to predict the fields, including the shielding effects of the structures in the vessel, and the currents induced in the vessel and these structures. These results can then be mapped to a sub-model of the divertor to predict loading and stress during the disruption.