ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
The top 10 states of nuclear
The past few years have seen a concerted effort from many U.S. states to encourage nuclear development. The momentum behind nuclear-friendly policies has grown considerably, with many states repealing moratoriums, courting nuclear developers and suppliers, and in some cases creating advisory groups and road maps to push deployment of new nuclear reactors.
Soren Harrison et al.
Fusion Science and Technology | Volume 64 | Number 2 | August 2013 | Pages 277-281
Divertor and High-Heat-Flux Components | Proceedings of the Twentieth Topical Meeting on the Technology of Fusion Energy (TOFE-2012) (Part 1), Nashville, Tennessee, August 27-31, 2012 | doi.org/10.13182/FST13-A18089
Articles are hosted by Taylor and Francis Online.
Operational requirements and research considerations make a high-temperature, toroidally continuous outer divertor an important upgrade to the Alcator C-Mod tokamak. Leading edge melting of tiles, non-uniform heat loads, large electromagnetic forces, and localized impurity sources limit the performance of bulk plasmas. These issues can be addressed by the installation of a well-aligned, toroidally continuous outer divertor. Additionally, future long pulse operation will cause the temperature of the outer divertor to reach bulk temperatures as high as 500 - 600 °C. This future operational requirement combined with the strong temperature dependence of plasma surface interactions (especially fuel retention), makes a controllable, high-temperature outer divertor desirable and necessary. The motivation, criteria, design, and R&D for the upgrade are discussed below.