ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Dennis L. Youchison, Michael A. Ulrickson
Fusion Science and Technology | Volume 64 | Number 2 | August 2013 | Pages 269-276
Divertor and High-Heat-Flux Components | Proceedings of the Twentieth Topical Meeting on the Technology of Fusion Energy (TOFE-2012) (Part 1), Nashville, Tennessee, August 27-31, 2012 | doi.org/10.13182/FST13-A18088
Articles are hosted by Taylor and Francis Online.
Continual technology development for fusion has come to rely on the principle of "design by analysis" where advanced finite element analysis (FEA) or finite volume analysis provides insight on the performance of engineered systems. Extensive three-dimensional (3D) computations in fluid dynamics, heat transfer, neutronics, magneto-hydrodynamics and electro-magnetics are involved in an iterative design process for magnets, vacuum vessels and in-vessel components. Many difficulties arose in the integration of computer-assisted design (CAD) packages and the numeric models and results from different FEA codes. Over the last decade, engineers developed a vast array of specialized translators and interpolation programs to deal with geometry, mesh and load transfers between single-discipline codes, often with mixed outcomes. Now, several multiphysics codes that allow calculations on the same mesh and easy transfer of loads and other boundary conditions are emerging in the commercial market. These codes often have a robust library of physics models and solvers that address both steady state and transient phenomena and provide simultaneous solutions to heat transfer, fluid flow and structural mechanics problems. This article reviews three existing design tools, provides some examples of how the multiphysics codes are impacting practical engineering design, and identifies some important gaps that still exist today.