ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
X-energy, Dow apply to build an advanced reactor project in Texas
Dow and X-energy announced today that they have submitted a construction permit application to the Nuclear Regulatory Commission for a proposed advanced nuclear project in Seadrift, Texas. The project could begin construction later this decade, but only if Dow confirms “the ability to deliver the project while achieving its financial return targets.”
J. Boscary et al.
Fusion Science and Technology | Volume 64 | Number 2 | August 2013 | Pages 263-268
Divertor and High-Heat-Flux Components | Proceedings of the Twentieth Topical Meeting on the Technology of Fusion Energy (TOFE-2012) (Part 1), Nashville, Tennessee, August 27-31, 2012 | doi.org/10.13182/FST12-499
Articles are hosted by Taylor and Francis Online.
The actively water-cooled plasma facing components (PFCs) of the Wendelstein 7-X stellarator consisting of the first wall protection and the divertor systems have a total surface area of about 265m2. The complex 3D geometry of the plasma and plasma vessel with 244 vessel ports dedicated to diagnostics, heating systems and water-cooling pipe-work together with the need to minimize the space taken and the significant heat loads expected on the components presents significant design and manufacturing challenges.The actively water- cooled divertor, made of 100 target modules, has an area of 19 m2. Each target module is formed from target elements made of CFC flat tiles bonded with the bi-layer technology to CuCrZr heat sinks. In total 16,000 tiles are bonded to the 890 target elements. A full-scale target module prototype has been manufactured to validate the design, the selected technological solutions and the inspection methods to be used in the serial module fabrication.About 30% of the target elements have been delivered and the production of the remaining elements should be completed by 2014. The fabrication of the components of the first wall protection, 320 stainless steel panels and 170 heat shields, is almost completed.