ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
X-energy, Dow apply to build an advanced reactor project in Texas
Dow and X-energy announced today that they have submitted a construction permit application to the Nuclear Regulatory Commission for a proposed advanced nuclear project in Seadrift, Texas. The project could begin construction later this decade, but only if Dow confirms “the ability to deliver the project while achieving its financial return targets.”
Yuhu Zhai, Peter Titus, Art Brooks, Ronald Hatcher
Fusion Science and Technology | Volume 64 | Number 2 | August 2013 | Pages 255-259
Plasma-Material Interactions | Proceedings of the Twentieth Topical Meeting on the Technology of Fusion Energy (TOFE-2012) (Part 1), Nashville, Tennessee, August 27-31, 2012 | doi.org/10.13182/FST13-A18086
Articles are hosted by Taylor and Francis Online.
The National Spherical Torus eXperiment (NSTX) upgrade project requires analysis qualifications of existing vacuum vessel and passive stabilizing plates for increased plasma performance. Vertical stability is critically dependent on the passive conducting structure that surrounds the plasma. In this paper, the passive plate is analyzed for the upgrade condition during plasma disruption to ensure the level of stress in the plate and the fastener is within its design limits. The counter-bore of the passive plate for bolting is evaluated in detail and counter-bore bushing is redesigned to prevent shear failure during disruptions as a result of high pulling and pushing forces, particularly for support at corner bolts.