ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
V. Cocilovo, G. Ramogida, E. Visca
Fusion Science and Technology | Volume 64 | Number 2 | August 2013 | Pages 230-234
Materials Development | Proceedings of the Twentieth Topical Meeting on the Technology of Fusion Energy (TOFE-2012) (Part 1), Nashville, Tennessee, August 27-31, 2012 | doi.org/10.13182/FST13-A18082
Articles are hosted by Taylor and Francis Online.
In a fusion power reactor the Plasma Facing Components (PFC) will experience a thermal and neutron irradiation induced creep together with tensile properties degradation and swelling due to neutron irradiation. So the investigation of the long term creep effects on the materials used for the PFC's in a fusion power plant are of vital importance for the design and safe operation of the device. On the other hand the creep behavior study for a given material requires long and expensive test campaigns, repeated on specimens at different levels of neutron irradiation, because of the material parameters variation due to the cumulated irradiation.In this work we want to investigate if the numerical mechanical simulations employment, according to a proper methodology, could reduce the number of needed creep tests, because this would be a valuable help in defining suitable materials and valid conceptual designs for PFC's. For this reason a method based on the systematic variation of the parameters of the empirical law, e.g. the Norton-Bailey, is outlined. To exemplify it, the behavior of a simplified model is analyzed under thermal and mechanical cyclic loading in a time transient elasto-plastic simulation, including the creep behavior, varying the parameters in the empirical creep law for the material.