ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Siting of Canadian repository gets support of tribal nation
Canada’s Nuclear Waste Management Organization (NWMO) announced that Wabigoon Lake Ojibway Nation has indicated its willingness to support moving forward to the next phase of the site selection process to host a deep geological repository for Canada’s spent nuclear fuel.
D. T. Blagoeva, J. Opschoor, G. Pintsuk, C. Sarbu
Fusion Science and Technology | Volume 64 | Number 2 | August 2013 | Pages 203-210
Materials Development | Proceedings of the Twentieth Topical Meeting on the Technology of Fusion Energy (TOFE-2012) (Part 1), Nashville, Tennessee, August 27-31, 2012 | doi.org/10.13182/FST13-A18077
Articles are hosted by Taylor and Francis Online.
The material requirements for structural and armor applications in the future nuclear fusion reactors impose a very high barrier to be surmounted in order to fulfill the safety requirements and reliable operation of the systems. The efforts of NRG and ECN in the developing of materials by Powder / Metal Injection Molding (PIM / MIM) are very promising and show a big potential of this technique as a prospective net shape parts manufacturing method, easily scalable to industrial level. Several MIM materials were developed by the ECN and characterized at NRG within European Fusion Development Agreement (EFDA) Work Programme. Of them, two materials - pure tungsten (W) and tungsten doped with 1vol% Y2O3 are demonstrating good potential for likely future use. Therefore, further characterization efforts are needed. The MIM W-1%Y2O3 material seems to be very promising material for armor applications. Extensive thermal shock testing performed at JUDITH 1 up to 1000 cycles and up to 1273 K did not cause crack formation.Additionally, two-component mock-ups were produced using MIM technology. From the very first microstructural investigation of the join area appears that MIM technology can be used as a reliable component joining method.