ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
D. T. Blagoeva, J. Opschoor, G. Pintsuk, C. Sarbu
Fusion Science and Technology | Volume 64 | Number 2 | August 2013 | Pages 203-210
Materials Development | Proceedings of the Twentieth Topical Meeting on the Technology of Fusion Energy (TOFE-2012) (Part 1), Nashville, Tennessee, August 27-31, 2012 | doi.org/10.13182/FST13-A18077
Articles are hosted by Taylor and Francis Online.
The material requirements for structural and armor applications in the future nuclear fusion reactors impose a very high barrier to be surmounted in order to fulfill the safety requirements and reliable operation of the systems. The efforts of NRG and ECN in the developing of materials by Powder / Metal Injection Molding (PIM / MIM) are very promising and show a big potential of this technique as a prospective net shape parts manufacturing method, easily scalable to industrial level. Several MIM materials were developed by the ECN and characterized at NRG within European Fusion Development Agreement (EFDA) Work Programme. Of them, two materials - pure tungsten (W) and tungsten doped with 1vol% Y2O3 are demonstrating good potential for likely future use. Therefore, further characterization efforts are needed. The MIM W-1%Y2O3 material seems to be very promising material for armor applications. Extensive thermal shock testing performed at JUDITH 1 up to 1000 cycles and up to 1273 K did not cause crack formation.Additionally, two-component mock-ups were produced using MIM technology. From the very first microstructural investigation of the join area appears that MIM technology can be used as a reliable component joining method.