ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
R. Leonard Myatt, Nicolai N. Martovetsky, Charlotte Barbier, Kevin D. Freudenberg
Fusion Science and Technology | Volume 64 | Number 2 | August 2013 | Pages 161-167
ITER | Proceedings of the Twentieth Topical Meeting on the Technology of Fusion Energy (TOFE-2012) (Part 1), Nashville, Tennessee, August 27-31, 2012 | doi.org/10.13182/FST13-A18072
Articles are hosted by Taylor and Francis Online.
The ITER central solenoid (CS) is wound from cable-in-conduit-conductor (CICC) and cooled by supercritical Helium (He) delivered to ~120 inner diameter (ID) turns through integrally welded "inlets." The flow to each inlet splits and passes through two pancakes, exiting at outlets. While both the He supply and return points (outlets) require penetrating the conduit wall, the inlets reside in the highest stress field, and thus become the more critical structural element.The CS Conceptual Design Review (CRD) reference He inlet design has a long, narrow slot in the inside diameter (ID) turn wall with pencil-tip shaped ends. This shape is optimized in order to minimize the hoop stress concentration. The slot length is chosen to expose each of the six superconducting (SC) sub-cables to the He cooling supply. Implementing this design at 120 inlet sites requires substantial machining and welding operations where even virgin conduit has minimal structural margin.A design space exploration produces numerous inlet options. One configuration emerges as the new reference configuration: the oblong, heavy-wall boss. It addresses all of the critical issues: bi-axial stress field, pressure drop and sub-cable flow uniformity, manufacturing costs (complexities and risks) and in-service robustness (least invasive, greatest margin).Finite element (FE) simulations are presented which highlight the results of the optimization and evaluation process.